Skip to main content

Complex Numbers

INTRODUCTION

A complex number is a number that can be represented by an expression of the form:  a + bi

where a and b are real numbers, and i is a symbol with the property 

i2  = −1

We call a the real part of the complex number and we call b the imaginary part.

ADDING AND SUBTRACTING COMPLEX NUMBERS

To add or subtract complex numbers, simply add or subtract their real parts and their imaginary parts separately.

\( (a+bi)\pm (c+di) = (a\pm c)+(b\pm d)i \)

Example:  If \( x=3+2i\) and \(y=-2-5i\), find \(x+y\).

Solution:

 \( \begin{align} x+y &= (3+2i)+(-2-5i) \\  &= (3-2)+(2-5)i \\  &= (1)+(-3)i \\  &= 1-3i \end{align} \)

MULTIPLYING COMPLEX NUMBERS                         

Multiplication is defined so that the usual laws hold: i.e., do FOIL as usual, but simplify at the end using the fact that \(i^2 = -1\).

\( \displaylines{(a+bi)x(c+di) &=& ac+adi+bci+bdi^2 \\ &=& (ac-bd)+(ad+bc)i} \)

 

Example: If \(x=3 +2i\) and \(y=-2-5i\), find \(xy\)

Solution:
 \( \begin{align} xy &=(3+2i)(-2-5i) \\ &= (3)(-2)+(3)(-5i)+(2i)(-2)+(-2i)(-5i) \\ &= (-6)+(-15i)+(-4i)+(10i^2) \\ &= -6-15i-4i-10(-1) \\ &= -6-15i-4i+10 \\ &= 4-19i \end{align} \)